Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience.

نویسندگان

  • Jay Demas
  • Stephen J Eglen
  • Rachel O L Wong
چکیده

In the immature retina, correlated spontaneous activity in the form of propagating waves is thought to be necessary for the refinement of connections between the retina and its targets. The continued presence of this activity in the mature retina would interfere with the transmission of information about the visual scene. The mechanisms responsible for the disappearance of retinal waves are not well understood, but one hypothesis is that visual experience is important. To test this hypothesis, we monitored the developmental changes in spontaneous retinal activity of both normal mice and mice reared in the dark. Using multi-electrode array recordings, we found that retinal waves in normally reared mice are present at postnatal day (P) 9 and begin to break down shortly after eye opening, around P15. By P21, waves have disappeared, and synchronous firing is comparable with that observed in the adult (6 weeks). In mice raised in the dark, we found a similar time course for the disappearance of waves. However, at P15, dark-reared retinas occasionally showed abnormally long periods of relative inactivity, not seen in controls. Apart from this quiescence, we found no striking differences between the patterns of spontaneous retinal activity from normal and dark-reared mice. We therefore suggest that visual experience is not required for the loss of synchronous spontaneous activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Hyper-synchronous Spontaneous Activity in the Developing Optic Tectum

Studies of patterned spontaneous activity can elucidate how the organization of neural circuits emerges. Using in vivo two-photon Ca(2+) imaging, we studied spatio-temporal patterns of spontaneous activity in the optic tectum of Xenopus tadpoles. We found rhythmic patterns of global synchronous spontaneous activity between neurons, which depends on visual experience and developmental stage. By ...

متن کامل

O-3: Effect of Melatonin Treatment on Developmental Potential of Somatic Cell Nuclear- Transferred Mouse Oocytes In Vitro

Background Melatonin (N-acetyl-5- methoxytryptamine) is mainly synthesized and secreted in the pineal gland, ovary, testes, bone marrow, retina and lens in mammalian species. It is involved in the detoxification of ROS and protects embryos from oxidative damage. Melatonin acts as a potential free radical scavenger, including peroxyl radical and hydroxyl radical. In addition, it can stimulate th...

متن کامل

Distinct Roles for Spontaneous and Visual Activity in Remodeling of the Retinogeniculate Synapse

Sensory experience and spontaneous activity play important roles in development of sensory circuits; however, their relative contributions are unclear. Here, we test the role of different forms of activity on remodeling of the mouse retinogeniculate synapse. We found that the bulk of maturation occurs without patterned sensory activity over 4 days spanning eye opening. During this early develop...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 7  شماره 

صفحات  -

تاریخ انتشار 2003